Skip to main content

How Java Garbage Collector Works?


The Java runtime environment deletes objects when it determines that they are no longer being used. This process is known as garbage collection. The Java runtime environment supports a garbage collector that periodically frees the memory used by objects that are no longer needed. The Java garbage collector is a mark-sweep garbage collector that scans Java's dynamic memory areas for objects, marking those that are referenced. After all possible paths to objects are investigated, those objects that are not marked (i.e. are not referenced) are known to be garbage and are collected. (A more complete description of our garbage collection algorithm might be "A compacting, mark-sweep collector with some conservative scanning".)

The garbage collector runs synchronously when the system runs out of memory, or in response to a request from a Java program. Your Java program can ask the garbage collector to run at any time by calling System.gc(). The garbage collector requires about 20 milliseconds to complete its task so, your program should only run the garbage collector when there will be no performance impact and the program anticipates an idle period long enough for the garbage collector to finish its job. Note: Asking the garbage collection to run does not guarantee that your objects will be garbage collected. The Java garbage collector runs asynchronously when the system is idle on systems that allow the Java runtime to note when a thread has begun and to interrupt another thread (such as Windows 95). As soon as another thread becomes active, the garbage collector is asked to get to a consistent state and then terminate.

Comments

Popular posts from this blog

Asynchronous Vs. Synchronous Communications

Synchronous (One thread):   1 thread -> |<---A---->||<----B---------->||<------C----->| Synchronous (multi-threaded):   thread A -> |<---A---->| \ thread B ------------> ->|<----B---------->| \ thread C ----------------------------------> ->|<------C----->|

WebSphere MQ Interview Questions

What is MQ and what does it do? Ans. MQ stands for MESSAGE QUEUEING. WebSphere MQ allows application programs to use message queuing to participate in message-driven processing. Application programs can communicate across different platforms by using the appropriate message queuing software products. What is Message driven process? Ans . When messages arrive on a queue, they can automatically start an application using triggering. If necessary, the applications can be stopped when the message (or messages) have been processed. What are advantages of the MQ? Ans. 1. Integration. 2. Asynchrony 3. Assured Delivery 4. Scalability. How does it support the Integration? Ans. Because the MQ is independent of the Operating System you use i.e. it may be Windows, Solaris,AIX.It is independent of the protocol (i.e. TCP/IP, LU6.2, SNA, NetBIOS, UDP).It is not required that both the sender and receiver should be running on the same platform What is Asynchrony? Ans. With messag

Advantages & Disadvantages of Synchronous / Asynchronous Communications?

  Asynchronous Communication Advantages: Requests need not be targeted to specific server. Service need not be available when request is made. No blocking, so resources could be freed.  Could use connectionless protocol Disadvantages: Response times are unpredictable. Error handling usually more complex.  Usually requires connection-oriented protocol.  Harder to design apps Synchronous Communication Advantages: Easy to program Outcome is known immediately  Error recovery easier (usually)  Better real-time response (usually) Disadvantages: Service must be up and ready. Requestor blocks, held resources are “tied up”.  Usually requires connection-oriented protocol