1.It separates the working/functional code from the error-handling code by way of try-catch clauses.
2.It allows a clean path for error propagation. If the called method encounters a situation it can't manage, it can throw an exception and let the calling method deal with it.
3.By enlisting the compiler to ensure that "exceptional" situations are anticipated and accounted for, it enforces powerful coding.
4.Exceptions are of two types: Compiler-enforced exceptions, or checked exceptions. Runtime exceptions, or unchecked exceptions. Compiler-enforced (checked) exceptions are instances of the Exception class or one of its subclasses — excluding the RuntimeException branch.
2.It allows a clean path for error propagation. If the called method encounters a situation it can't manage, it can throw an exception and let the calling method deal with it.
3.By enlisting the compiler to ensure that "exceptional" situations are anticipated and accounted for, it enforces powerful coding.
4.Exceptions are of two types: Compiler-enforced exceptions, or checked exceptions. Runtime exceptions, or unchecked exceptions. Compiler-enforced (checked) exceptions are instances of the Exception class or one of its subclasses — excluding the RuntimeException branch.
The compiler expects all checked exceptions to be appropriately handled. Checked exceptions must be declared in the throws clause of the method throwing them — assuming, of course, they're not being caught within that same method. The calling method must take care of these exceptions by either catching or declaring them in its throws clause. Thus, making an exception checked forces the us to pay heed to the possibility of it being thrown. An example of a checked exception is java.io.IOException. As the name suggests, it throws whenever an input/output operation is abnormally terminated.
Comments
Post a Comment